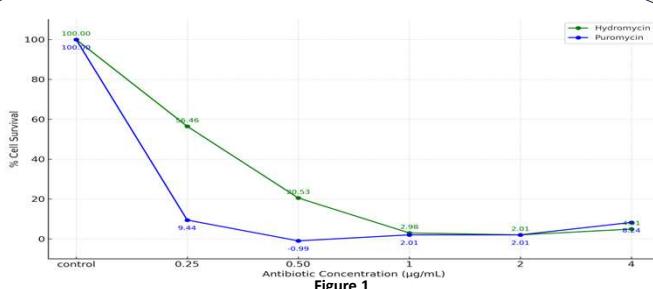


Authors: Mustafa Khwaja, Ed Fielder, Lakshana Baheerathan, Viktor Korolchuk

Introduction

Neurodegenerative diseases such as Parkinson's and ALS are marked by the deposition of protein aggregates in cells. Cells have control mechanism that they have evolved to use, and that is a selective subtype of autophagy called aggresphagy which helps to clear out these toxic aggregates and maintain proteostasis. This study establishes a fibroblast model using an inducible system to express aggregation-prone protein, such as α -synuclein, FUS, and TDP-43, and find out whether fibroblasts utilize autophagy pathways to degrade these pathological clumps. By using primary human fibroblasts and visualizing aggregate formation through aggresomal staining. This model enables the study of clearance dynamics in a cellular context giving insight into basic cellular control mechanisms against misfolded protein stress (Mizushima, 2007).

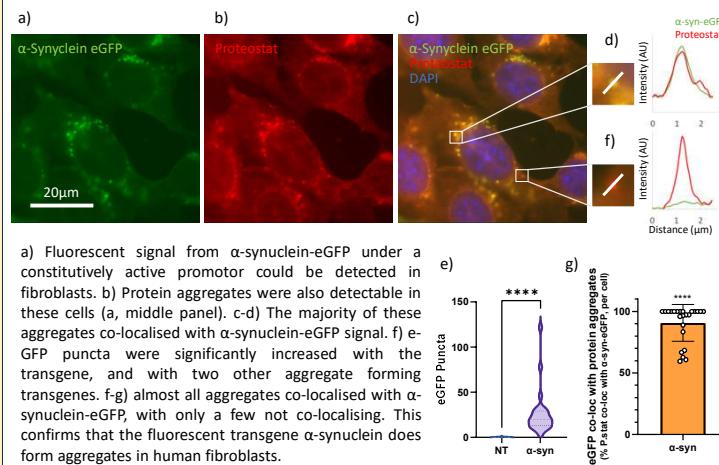

Objectives

- Establish that transgenes of aggregate forming proteins do form aggregates in human fibroblasts
- Transduce human fibroblasts with an inducible promotor system
- Transduce human fibroblasts with an inducible transgene expressing aggregate forming proteins

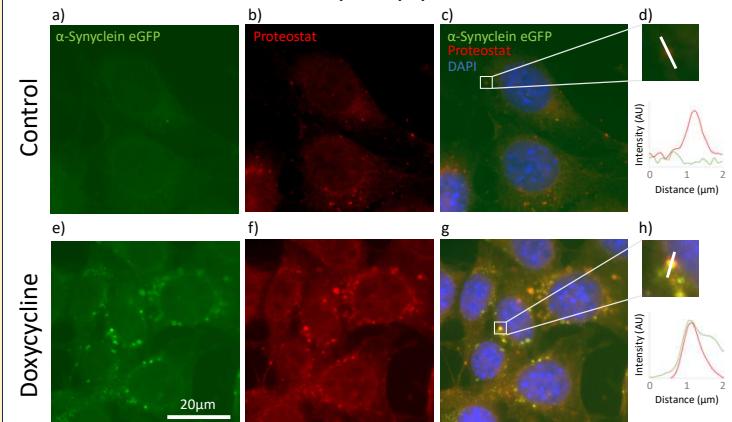
Methods

- Cell Source:
Human skin fibroblasts from an 18-year-old donor served as the cell source
- Transduction of Lentiviral:
Using lentivirus and polybrene, the Tet-On 3G system—which contains the hygromycin resistance gene—was introduced. After 24 hours, the media switched to FBS TET-free to avoid leaky expression.
- Optimisation of Antibiotic selection:
Different hygromycin dosages were administered to cells (post-24–48h transduction). Cell survival is monitored to determine the ideal viral volume and antibiotic concentration.
- Aggregation-Prone Protein Expression:
Halo-GFP-tagged α -synuclein, FUS, and TDP-43 mutants were utilised for the second transduction. Aggregate formation is triggered by doxycycline induction
- Identification of aggresomes:
Post induction, an aggresome detection kit is used. Visualization via fluorescence microscopy. (Hanada et al., 2007).

Results



Hygromycin showed a dose-dependent drop in cell survival, from around 100% at control to about 20% at 0.5 $\mu\text{g/mL}$ and <5% between 1–2 $\mu\text{g/mL}$. This suggests that 0.5–1 $\mu\text{g/mL}$ is the ideal concentration for choosing effectively transduced cells while maintaining a small surviving population (Sigma-Aldrich, 2022).


At 0.25 $\mu\text{g/mL}$, puromycin led to nearly complete cell death, demonstrating how sensitive fibroblasts are to the antibiotic. The inability to identify a safe selection window suggests that it is unsuitable for this sort of cell (Kill curve standards, 2011).

According to established protocols, these results support the idea that each cell line and antibiotic should have its kill curve reviewed in order to identify the lowest selection dose that minimises cytotoxic stress while killing >99% of non-transduced cells.

α -synuclein-eGFP forms aggregates in human fibroblasts

TET-On inducible α -synuclein-eGFP forms aggregates in human fibroblasts when activated by Doxycycline

Conclusion

Through this project, we developed a fibroblast model that can be switched on to produce proteins that are prone to forming aggregates which is a key feature of neurodegenerative diseases. Using a viral delivery and antibiotic selection, we established stable cells and showed that doxycycline induction leads to clear aggregate formation which was confirmed by staining. This model provides a straightforward framework to study how cells are able to clear toxic clumps and sets the stage for future tests of autophagy & gain more understanding of the cellular pathways and potentially discovering novel therapeutic approaches that can help in people suffering from neurodegenerative disease

References :

- Mizushima, N. (2007). Autophagy: process and function. *Genes & Development*, 21(22), 2861–2873. <https://pubmed.ncbi.nlm.nih.gov/18006683>
- Hanada, T., Noda, N. N., Satomi, Y., Ichimura, Y., Fujio, Y., Takao, T., et al. (2007). The Atg12–Atg5 conjugate functions in the elongation of the isolation membrane. *Journal of Biological Chemistry*, 282(47), 33902–33910. <https://pubmed.ncbi.nlm.nih.gov/17986448>
- Sigma-Aldrich. (2022). Antibiotic Kill Curve – Protocol for Dose Response Selection in Mammalian Cells. <https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/mammalian-cell-culture/antibiotic-kill-curve>
- Jin, Y., Zhang, Y., Zhang, Q., Zhang, L., & Fang, X. (2011). Determination of the optimal concentration of several selective drugs in porcine embryonic fibroblasts, including hygromycin and puromycin. *Reproduction in Domestic Animals*, 46(5), 911–916. <https://pubmed.ncbi.nlm.nih.gov/21906188>